Heat transport property at the lowermost part of the Earth’s mantle

Lattice thermal conductivities of MgSiO3 bridgmanite and postperovskite (PPv) phases under the Earth’s deepest mantle conditions were determined by quantum mechanical computer simulations. We found a substantial increase in the conductivity associated with the phase change. This indicates that the PPv phase boundary is the boundary not only of the mineralogy but also the thermal conductivity. The effect of anisotropy on the conductivity of PPv in the heat transport properties at the lowermost mantle was also found to be minor.

Heat transport in deep Earth controls its thermal evolution. Determination of the thermal conductivity of the lower mantle is one of the central issues for a better understanding of deep Earth phenomena, such as the style of mantle convection, the evolution of the magnetic field, and inner core growth. However, it is poorly understood because deep mantle pressure and temperature conditions are quite difficult to replicate for laboratory experiments. We determined the thermal conductivity of MgSiO3 postperovskite, the most abundant mineral at the bottom of the mantle and which is transformed from MgSiO3 bridgmanite, under the lowermost mantle conditions based on quantum mechanical computations without any empirical parameters. We found a jump in the thermal conductivity associated with the phase transition, indicating that the postperovskite phase boundary is the boundary not only of the mineralogy but also the thermal conductivity (Figure 1). The phase change produces larger lateral variation in heat flux across the core-mantle boundary (CMB). Also, we examined the effects of anisotropy on the thermal conductivity of the CMB heat flux and found that it to be minor with the crystal orientation of postperovskite. This may explain how seismic anisotropy, observed at the base of the mantle, is developed.

Reference URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085273

Bibliographic Information

Lattice Thermal Conductivity of MgSiO3 Postperovskite Under the Lowermost Mantle Conditions From Ab Initio Anharmonic Lattice Dynamics, Haruhiko Dekura and Taku Tsuchiya, Geophysical Research Letters, 46 (22), 12919-12926, doi:10.1029/2019GL085273, 2019 (November 28).

Fundings

  • Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP15H05834, JP26287137, and 22224012
  • JSPS Core-to-Core Program on International Alliance for Material Science in Extreme States with High Power Laser and XFEL
  • X-ray Free Electron Laser Priority Strategy Program (MEXT)

Media

  • Calculated lattice thermal conductivity of MgSiO3 postperovskite (PPv) and bridgmanite (Brg) under the Earth’s lowermost mantle conditions

    Calculated lattice thermal conductivity of MgSiO3 postperovskite (PPv) and bridgmanite (Brg) under the Earth’s lowermost mantle conditions

    Calculated lattice thermal conductivity of MgSiO3 postperovskite (PPv) and bridgmanite (Brg) under the Earth’s lowermost mantle conditions

    credit : Ehime University
    Usage Restriction : Please get copyright permission

Contact Person

Name : Haruhiko DEKURA
Phone : 089-927-8408
E-mail : dekura.haruhiko.mf@ehime-u.ac.jp
Affiliation : Geodynamics Research Center